High-resolution bioelectrical imaging of Aβ-induced network dysfunction on CMOS-MEAs for neurotoxicity and rescue studies

对 CMOS-MEA 上 Aβ 诱导的网络功能障碍进行高分辨率生物电成像,用于神经毒性和救援研究

阅读:5
作者:Hayder Amin, Thierry Nieus, Davide Lonardoni, Alessandro Maccione, Luca Berdondini

Abstract

Neurotoxicity and the accumulation of extracellular amyloid-beta1-42 (Aβ) peptides are associated with the development of Alzheimer's disease (AD) and correlate with neuronal activity and network dysfunctions, ultimately leading to cellular death. However, research on neurodegenerative diseases is hampered by the paucity of reliable readouts and experimental models to study such functional decline from an early onset and to test rescue strategies within networks at cellular resolution. To overcome this important obstacle, we demonstrate a simple yet powerful in vitro AD model based on a rat hippocampal cell culture system that exploits large-scale neuronal recordings from 4096-electrodes on CMOS-chips for electrophysiological quantifications. This model allows us to monitor network activity changes at the cellular level and to uniquely uncover the early activity-dependent deterioration induced by Aβ-neurotoxicity. We also demonstrate the potential of this in vitro model to test a plausible hypothesis underlying the Aβ-neurotoxicity and to assay potential therapeutic approaches. Specifically, by quantifying N-methyl D-aspartate (NMDA) concentration-dependent effects in comparison with low-concentration allogenic-Aβ, we confirm the role of extrasynaptic-NMDA receptors activation that may contribute to Aβ-neurotoxicity. Finally, we assess the potential rescue of neural stem cells (NSCs) and of two pharmacotherapies, memantine and saffron, for reversing Aβ-neurotoxicity and rescuing network-wide firing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。