Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses

PM2.5 的生物剂量反应:颗粒提取方法对血小板和肺反应的影响

阅读:5
作者:Laura S Van Winkle, Keith Bein, Donald Anderson, Kent E Pinkerton, Fern Tablin, Dennis Wilson, Anthony S Wexler

Abstract

Particulate matter (PM) exposure contributes to respiratory diseases and cardiopulmonary mortality. PM toxicity is related to sources and composition, such as abundance of polycyclic aromatic hydrocarbons (PAHs). We exposed adult male BALB/c mice, via oropharyngeal aspiration, to a range of doses of PM2.5 collected during the winter in downtown Sacramento near a major freeway interchange (SacPM). Two preparation methods (spin-down and multi-solvent extraction) were tested to remove particles from collection filters. Three doses were analyzed 24 h after treatment for (1) leukocytes and total protein in bronchoalveolar lavage fluid (BALF), (2) airway-specific and whole lobe expression of PAH-sensitive genes (CYP1B1 and CYP1A1) and IL-1 b, (3) lung histology, and (4) platelet function. Both extraction methods stimulated biological responses, but the spin-down method was more robust at producing IL-1 b and CYP1B1 gene responses and the multi-solvent extraction induced whole lung CYP1A1. Neutrophils in the BALF were increased 5- to 10-fold at the mid and high dose for both preparations. Histopathology scores indicated dose-dependent responses and increased pathology associated with spin-down-derived PM exposure. In microdissected airways, spin-down PM increased CYP1B1 gene expression significantly, but multi-solvent extracted PM did not. Platelet responses to the physiological agonist thrombin were approximately twice as potent in the spin-down preparation as in the multi-solvent extract. We conclude (1) the method of filter extraction can influence the degree of biological response, (2) for SacPM the minimal effective dose is 27.5-50 µg based on neutrophil recruitment, and (3) P450s are upregulated differently in airways and lung parenchyma in response to PAH-containing PM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。