Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+-activated K+ channels and sensory nerves

瞬时受体电位香草酸 4 通道激活引起的低血压:Ca2+ 激活的 K+ 通道和感觉神经的作用

阅读:5
作者:Feng Gao, Donna H Wang

Conclusion

Our data show that the hypotensive effect induced by TRPV4 activation attributes to, at least in part, activation of MaxiK channels and CGRP receptors upon CGRP release from sensory nerves.

Methods

Wistar rats were given 50 mg/kg capsaicin subcutaneously 1-2 days postnatally to cause degeneration of capsaicin-sensitive sensory nerves. Vehicle was given to the corresponding newborn rats that formed the control group. After being weaned, male rats were picked for further investigation. At the age of 8 weeks, mean arterial pressure and its response to 4alpha-phorbol 12,13-didecanoate [4alpha-PDD, a selective TRPV4 activator, 2.5 mg/kg, intravenous(ly) or i.v.] with or without CGRP8-37 (1 mg/kg per min, i.v.), an antagonist of calcitonin gene-related peptide (CGRP, a potent vasodilator released from sensory nerves), in vehicle or capsaicin-pretreated rats anesthetized with sodium pentobarbital [50 mg/kg, intraperitoneal(ly)] were monitored to observe the contributions of neuropeptides released from sensory nerves to the 4alpha-PDD-induced hypotension. To detect the roles of various vasodilating factors released by vascular endothelium in the hypotensive effect induced by TRPV4 activation, the corresponding inhibitors/blockers, including indomethacin (a cyclooxygenase inhibitor, 10 mg/kg, i.v.), Nomega-nitro-L-arginine (L-NA, a nitric oxide synthase inhibitor, 20 mg/kg, i.v.), apamin [a blocker of small conductance Ca2+-activated K+ (MaxiK) channels, 50 microg/kg, i.v.] combined with charybdotoxin (a blocker of intermediate and large conductance MaxiK channels, 50 microg/kg, i.v.), were used at various time before 4alpha-PDD injection. Plasma CGRP and substance P levels of rats before or after administration were measured using the corresponding radioimmunoassays. At last, immunohistochemistry stainings were performed to observe expression of TRPV4/CGRP/MaxiK in mesenteric resistance arteries and sensory neurons/nerve fibers.

Objective

To examine the mechanisms involved in hypotension induced by transient receptor potential vanilloid 4 (TRPV4) activation.

Results

Intravenous administration of 4alpha-PDD produced remarkable hypotension in vehicle-pretreated rats. The depressor effect was attenuated by degeneration of capsaicin-sensitive sensory nerves (P < 0.05) or administration of CGRP8-37 (P < 0.05). In both vehicle and capsaicin-pretreated rats, the combined administration of apamin and charybdotoxin markedly reduced the 4alpha-PDD-induced hypotensive effect (P < 0.05), but i.v. administration of indomethacin and Nomega-nitro-L-arginine did not produce the similar effect. Intravenous administration of 4alpha PDD increased plasma CGRP but not substance P levels in vehicle-pretreated rats only (P < 0.05), which was not affected by indomethacin, Nomega-nitro-L-arginine, or apamin and charybdotoxin. Immunohistochemistry staining showed that TRPV4 colocalized with MaxiK channels in endothelium of mesenteric resistance arteries and with CGRP in sensory neurons/nerve fibers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。