CircRNA Lrp6 promotes cementoblast differentiation via miR-145a-5p/Zeb2 axis

CircRNA Lrp6 通过 miR-145a-5p/Zeb2 轴促进成牙骨质细胞分化

阅读:6
作者:Mengying Li, Mingyuan Du, Yunlong Wang, Jiaqi Zhu, Jiawen Pan, Zhengguo Cao, Hong He

Conclusion

Taken together, circLRP6 appears to modulate cementoblast differentiation by antagonizing the function of miR-145a-5p, thereby increasing Zeb2. This study serves as a stepping stone for the potential development of an approach to promote cementum formation.

Material and methods

The mRNA expressions of circLRP6, miR-145a-5p, zinc finger E-box binding homeobox 2 (Zeb2), runt-related transcription factor 2 (Runx2), osteopontin (Opn), and bone sialoprotein (Bsp) were evaluated by qRT-PCR. The protein levels of Zeb2 were measured by Western blot. Bioinformatic analysis and dual-luciferase reporter assays were used to test the potential binding targets of miR-145a-5p. The differentiation potentials of the cementoblasts were assessed by Alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin red S (ARS) staining, and quantification.

Methods

The mRNA expressions of circLRP6, miR-145a-5p, zinc finger E-box binding homeobox 2 (Zeb2), runt-related transcription factor 2 (Runx2), osteopontin (Opn), and bone sialoprotein (Bsp) were evaluated by qRT-PCR. The protein levels of Zeb2 were measured by Western blot. Bioinformatic analysis and dual-luciferase reporter assays were used to test the potential binding targets of miR-145a-5p. The differentiation potentials of the cementoblasts were assessed by Alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin red S (ARS) staining, and quantification.

Objective

Cementum is a part of the periodontium and anchors periodontal ligaments to the alveolar bone. Cementoblasts are responsible for the cementum formation via matrix deposition and subsequently mineralization. Thus, exploring novel mechanisms underlying the function of cementoblast contributes to the treatment of cementum damage. Recently, circRNA Lrp6 (circLRP6) has been of interest due to its active role in cell differentiation, but its potential role in cementoblast differentiation remains unclear. Herein, we attempted to elucidate the role of circLRP6 in cementoblast differentiation and clarify any associated mechanisms. Material and

Results

In this study, circLRP6 was significantly upregulated in cementoblast differentiation. Furthermore, circLRP6 knockdown inhibited ALP levels, reduced calcium nodule formation and the expression of Runx2, Opn, and Bsp. Mechanically, bioinformatic analysis and dual-luciferase reporter assays confirmed miR-145a-5p was a potential binding target of circLRP6. miR-145a-5p can negatively regulate cementoblast differentiation. Subsequently, bioinformatic analysis and dual-luciferase reporter assays confirmed Zeb2 was a potential miR-145a-5p target. miR-145a-5p overexpression resulted in a downregulation of Zeb2. Furthermore, Zeb2 inhibition partially reversed the effect of circLRP6 during cementoblast differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。