Thermal decomposition of nano Al-based energetic composites with fluorinated energetic polyurethane binders: experimental and theoretical understandings for enhanced combustion and energetic performance

含氟含能聚氨酯粘合剂的纳米铝基含能复合材料的热分解:增强燃烧和能量性能的实验和理论理解

阅读:10
作者:Gang Tang, He Wang, Chunyan Chen, Yabei Xu, Dongping Chen, Dongli Wang, Yunjun Luo, Xiaoyu Li

Abstract

Energetic composites composed of polymeric binders and metallic fuels are widely used in industrial and military fields, and their performance is largely dependent on the combustion process. Fluorinated energetic polymeric binders can facilitate the combustion of metallic fuels such as aluminum particles and enhance the energetic level of the energetic composites. In this report, fluorinated energetic polyurethanes (FPUs) were applied as binders for energetic composites with aluminum nanoparticles (AlNPs). The fluorinated components in the energetic binder could be a uniform dispersion inside the composites, endowing the composites with decent mechanical properties and high combustion rate. Most significantly, compared with the composites without fluorine, FPU/AlNP energetic composites not only showed a remarkably improved combustion efficiency, but also, surprisingly, a dramatic enhancement in the heat of explosion by 91.2%, despite the low content of fluorine. By analyzing the combustion products together with kinetic simulations derived from chemical reaction neural network (CRNN) modelling, a detailed mechanistic understanding of the combustion process was provided, suggesting the importance of synergistic effects brought by the fluorinated and energetic components.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。