Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt

过度表达 E1A 刺激基因的细胞阻遏物通过激活 PI3K/Akt 保护间充质干细胞免于缺氧和血清剥夺引起的细胞凋亡

阅读:8
作者:Jie Deng, Yaling Han, Chenhui Yan, Xiaoxiang Tian, Jie Tao, Jian Kang, Shaohua Li

Abstract

Bone marrow-derived mesenchymal stem cells (MSCs) have great potential for repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their therapeutic potential. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. The aim of this study was to investigate the anti-apoptotic effects of CREG on MSCs under hypoxic and serum deprivation (SD) conditions. We also investigated the potential mechanism(s) that may mediate the actions of CREG. All experiments were performed on rat bone marrow MSCs. Apoptosis was induced by exposure of cells to hypoxia/SD in a sealed GENbox hypoxic chamber. Effects of CREG were investigated in the absence or presence of inhibitors that target phosphoinositide 3-kinase (PI3K). We found that the overexpression of CREG markedly protected MSCs from hypoxia/SD-induced apoptosis through inhibition of the mitochondrial apoptotic pathway, leading to attenuation of caspase-3. Moreover, CREG enhanced Akt phosphorylation and decreased the expression of p53 in MSCs under hypoxic/SD conditions. The PI3K/Akt inhibitor LY294002 significantly increased the amount of p53 protein and attenuated the anti-apoptotic effects of CREG on MSCs. This study indicates that CREG is a novel and potent survival factor for MSCs, therefore, it may be a useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。