Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes

三维有序大孔碳固体接触结构和表面化学对离子选择电极性能的影响

阅读:6
作者:Melissa A Fierke, Chun-Ze Lai, Philippe Bühlmann, Andreas Stein

Abstract

The effects of the architecture and surface chemistry of three-dimensionally ordered macroporous (3DOM) carbon solid contacts on the properties of ion-selective electrodes (ISEs) were examined. Infiltration of the plasticized poly(vinyl chloride) (PVC) membrane into the pores of the carbon created a large interfacial area between the sensing membrane and the solid contact, as shown by cryo-scanning electron microscopy (cryo-SEM) and elemental analysis. This large interfacial area, along with the high capacitance of the 3DOM carbon solid contacts (as determined by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy) results in an excellent long-term stability of the potentiometric response, with drifts as low as 11.7 muV/h. The comparison of 3DOM carbon solid contacts with an untemplated carbon solid contact shows that the pore structure is an essential feature for the excellent electrode performance. However, the surface chemistry of the 3DOM carbon cannot be ignored. While there is no evidence for an aqueous layer forming between the sensing membrane and unoxidized 3DOM carbon, electrodes based on oxidized 3DOM carbon exhibit potentiometric responses with the typical hysteresis indicative of a water layer. A comparison of the different techniques to characterize the solid contacts confirms that constant-current charge-discharge experiments offer an intriguing approach to assess the long-term stability of solid-contact ISEs but shows that their results need to be interpreted with care.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。