Controlled and tuneable drug release from electrospun fibers and a non-invasive approach for cytotoxicity testing

电纺纤维中药物的可控、可调释放以及细胞毒性测试的非侵入性方法

阅读:9
作者:G Piccirillo, D A Carvajal Berrio, A Laurita, A Pepe, B Bochicchio, K Schenke-Layland, S Hinderer

Abstract

Electrospinning is an attractive method to generate drug releasing systems. In this work, we encapsulated the cell death-inducing drug Diclofenac (DCF) in an electrospun poly-L-lactide (PLA) scaffold. The scaffold offers a system for a sustained and controlled delivery of the cytotoxic DCF over time making it clinically favourable by achieving a prolonged therapeutic effect. We exposed human dermal fibroblasts (HDFs) to the drug-eluting scaffold and employed multiphoton microscopy and fluorescence lifetime imaging microscopy. These methods were suitable for non-invasive and marker-independent assessment of the cytotoxic effects. Released DCF induced changes in cell morphology and glycolytic activity. Furthermore, we showed that drug release can be influenced by adding dimethyl sulfoxide as a co-solvent for electrospinning. Interestingly, without affecting the drug diffusion mechanism, the resulting PLA scaffolds showed altered fibre morphology and enhanced initial DCF burst release. The here described model could represent an interesting way to control the diffusion of encapsulated bio-active molecules and test them using a marker-independent, non-invasive approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。