Loss of Autophagy Causes Increased Apoptosis of Tibial Plateau Chondrocytes in Guinea Pigs with Spontaneous Osteoarthritis

自噬丧失导致自发性骨关节炎豚鼠胫骨平台软骨细胞凋亡增加

阅读:5
作者:Xiao-Jian Wang, Wei Tian, Wei-Wei Xu, Xiao Lu, Yu-Ming Zhang, Li-Jun Li, Feng Chang

Conclusion

The results indicate that the function of autophagy in chondrocytes may at least partly involve the catabolism of glycogen. In guinea pigs with OA, the level of autophagy in tibial plateau chondrocytes decreased, and chondrocytes were unable to degrade intracellular glycogen into glucose, leading to less energy for chondrocytes and increased apoptosis.

Objective

The goal of the present study was to observe the effect of autophagy in tibial plateau chondrocytes on apoptosis in spontaneous knee osteoarthritis (OA) in guinea pigs. Design: Fifty 2-month-old female Hartley guinea pigs were divided into a normal group (10 animals, all euthanized after 7 months) and an OA group (40 animals, 10 of which were euthanized after 10 months). Immunohistochemistry, RT-qPCR and Western blotting were used to evaluate autophagy levels, intracellular glycogen accumulation and apoptosis in tibial plateau chondrocytes in vivo and in vitro. The remaining 30 guinea pigs in the OA group were divided into 3 groups: a rapamycin group, a normal saline group, and a 3-methyladenine (3-MA) group. Intracellular glycogen accumulation and chondrocyte apoptosis were assessed by altering the level of autophagy in chondrocytes in vivo.

Results

When spontaneous OA occurred in guinea pigs, autophagy levels in tibial plateau chondrocytes decreased, while intracellular glycogen accumulation and the rate of chondrocyte apoptosis increased. After enhancing the level of autophagy in tibial plateau chondrocytes in guinea pigs with OA, intracellular glycogen accumulation and the rate of chondrocyte apoptosis decreased, while inhibiting autophagy had the opposite effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。