GlyT1 encephalopathy: Characterization of presumably disease causing GlyT1 mutations

GlyT1 脑病:可能致病的 GlyT1 突变的特征

阅读:5
作者:K Hauf, L Barsch, D Bauer, R Buchert, A Armbruster, L Frauenfeld, U Grasshoff, V Eulenburg

Abstract

Glycine constitutes a major inhibitory neurotransmitter predominantly in caudal regions of the CNS. The extracellular glycine concentration is regulated synergistically by two high affinity, large capacity transporters GlyT1 and GlyT2. Both proteins are encoded by single genes SLC6A9 and SLC6A5, respectively. Mutations within the SLC6A5 gene encoding for GlyT2 have been demonstrated to be causative for hyperekplexia (OMIM #614618), a complex neuromuscular disease, in humans. In contrast, mutations within the SLC6A9 gene encoding for GlyT1 have been associated with GlyT1 encephalopathy (OMIM #601019), a disease causing severe postnatal respiratory deficiency, muscular hypotonia and arthrogryposis. The consequences of the respective GlyT1 mutations on the function of the transporter protein, however, have not yet been analysed. In this study we present the functional characterisation of three previously published GlyT1 mutations, two mutations predicted to cause truncation of GlyT1 (GlyT1Q573* and GlyT1K310F+fs*31) and one predicted to cause an amino acid exchange within transmembrane domain 7 of the transporter (GlyT1S407G), that are associated with GlyT1 encephalopathy. Additionally, the characterization of a novel mutation predicted to cause an amino acid exchange within transmembrane domain 1 (GlyT1V118M) identified in two fetuses showing increased nuchal translucency and arthrogryposis in routine ultrasound scans is demonstrated. We show that in recombinant systems the two presumably truncating mutations resulted in an intracellular retained GlyT1 protein lacking the intracellular C-terminal domain. In both cases this truncated protein did not show any residual transport activity. The point mutations, hGlyT1S407G and hGlyT1V118M, were processed correctly, but showed severely diminished activity, thus constituting a functional knock-out in-vivo. Taken together our data demonstrate that all analysed mutations of GlyT1 that have been identified in GlyT1 encephalopathy patients cause severe impairment of transporter function. This is consistent with the idea that loss of GlyT1 function is indeed causal for the disease phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。