The use of patient-derived breast tissue explants to study macrophage polarization and the effects of environmental chemical exposure

使用患者乳腺组织外植体研究巨噬细胞极化和环境化学物质暴露的影响

阅读:4
作者:Kelly J Gregory, Stephanie M Morin, Alex Kubosiak, Jennifer Ser-Dolansky, Benjamin J Schalet, D Joseph Jerry, Sallie S Schneider

Abstract

Ex vivo mammary explant systems are an excellent model to study interactions between epithelium and stromal cell types because they contain physiologically relevant heterotypic interactions in the background of genetically diverse patients. The intact human mammary tissue, termed patient-derived explant (PDE), can be used to investigate cellular responses to a wide variety of external stimuli in situ. For this study, we examined the impact of cytokines or environmental chemicals on macrophage phenotypes. We demonstrate that we can polarize macrophages within human breast tissue PDEs toward M1 or M2 through the addition of interferon-γ (IFNγ) + lipopolysaccharide (LPS) or interleukin (IL)-4 + IL-13, respectively. Elevated expression levels of M(IFNγ + LPS) markers (HLADRA and CXCL10) or M(IL-4 + IL-13) markers (CD209 and CCL18) were observed in cytokine-treated tissues. We also examined the impact of the endocrine-disrupting chemical, benzophenone-3, on PDEs and measured significant, yet varying effects on macrophage polarization. Furthermore, a subset of the PDEs respond to IL-4 + IL-13 through downregulation of E-cadherin and upregulation of vimentin which is reminiscent of epithelial-to-mesenchymal transition (EMT) changes. Finally, we were able to show immortalized nonmalignant breast epithelial cells can exhibit EMT characteristics when exposed to growth factors secreted by M(IL-4 + IL-13) macrophages. Taken together, the PDE model system is an outstanding preclinical model to study early tissue-resident immune responses and effects on epithelial and stromal responses to stimuli found both endogenously in the breast and exogenously as a result of exposures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。