Nucleolar protein nucleolin functions in replication stress-induced DNA damage responses

核仁蛋白核仁素在复制应激诱导的 DNA 损伤反应中发挥作用

阅读:6
作者:Kasumi Kawamura, Fei Qi, Qingmei Meng, Ikue Hayashi, Junya Kobayashi

Abstract

The nucleolus contains multiple copies of ribosomal (r)DNA, which indicate sites of frequent replication stress and suggest the existence of a mechanism to prevent replication stress-related rDNA instability and the possibility that such a mechanism contributes to the whole genomic stability against replication stress. We have previously reported that nucleolin, a major nucleolar protein, is involved in ionizing radiation-induced DNA damage responses (DDRs) such as ataxia telangiectasia mutated (ATM)-dependent cell cycle checkpoints and homologous recombination (HR) repair. Here, we investigated the role of nucleolin in DDR due to replication stress. The results indicate that following replication stress, nucleolin interacted with the histone γH2AX, proliferating cell nuclear antigen (PCNA), and replication protein A (RPA)32, suggesting that it may be recruited to DNA damage sites on the replication fork. Furthermore, the knockdown of nucleolin by siRNA reduced the activation of ATM and RAD3-related (ATR) kinase and the formation of RAD51 and RPA32 foci after replication stress due to UV or camptothecin exposure, whereas nucleolin overexpression augmented ATR-dependent phosphorylation and RAD51 and RPA accumulation on chromatin. Moreover, these overexpressing cells seemed to increase repair activity and resistance to replication stress. Our results indicate that nucleolin plays an important role in replication stress-induced DDRs such as ATR activation and HR repair. Given that nucleolin overexpression is often observed in many types of cancer cells, our findings suggest that nucleolin is involved in the regulation of resistance to replication stress that may otherwise lead to tumorigenesis and it could be a possible target for chemotherapy and radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。