Inhibition of TNF-α-induced neuronal apoptosis by antidepressants acting through the lysophosphatidic acid receptor LPA1

抗抑郁药通过溶血磷脂酸受体 LPA1 抑制 TNF-α 诱导的神经元凋亡

阅读:10
作者:Maria C Olianas, Simona Dedoni, Pierluigi Onali

Abstract

Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine considered to be implicated in the pathogenesis of major depressive disorder, is a critical regulator of neuronal cell fate. In the present study we found that TNF-α-induced apoptosis of HT22 hippocampal cells, a neuroblast-like cell line, was markedly attenuated by the antidepressants mianserin, mirtazapine and amitriptyline. The anti-apoptotic effect of the antidepressants was blocked by either pharmacological inhibition or gene silencing of the lysophosphatidic acid receptor LPA1. Mianserin failed to affect TNF-α-induced caspase 8 activation, but inhibited the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, procaspase 9 cleavage and downstream activation of caspase 3 in response to the cytokine. By acting through LPA1, mianserin also attenuated the enhanced pro-apoptotic response induced by the combination of TNF-α with other pro-inflammatory cytokines. TNF-α appeared to counterbalance its own pro-apoptotic response by activating NF-kB, ERK1/2 and JNK. Antidepressants had no significant effects on NF-kB activation, but potentiated the TAK-1-dependent phosphorylation of ERK1/2 and JNK elicited by the cytokine. This synergistic interaction was associated with enhanced JNK-mediated phosphorylation of Bcl-2 at Ser70 and increased ERK1/2-dependent mitochondrial accumulation of Mcl-1, two anti-apoptotic proteins that promote mitochondrial outer membrane stability. These results indicate that certain antidepressants, by activating LPA1 signalling, protect HT22 hippocampal cells from TNF-α-induced apoptosis through a mechanism involving, at least in part, the potentiation of the pro-survival pathways activated by the cytokine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。