Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease

神经元载脂蛋白 E4 增加阿尔茨海默病中的细胞死亡和磷酸化 tau 释放

阅读:7
作者:Anil R Wadhwani, Amira Affaneh, Stephanie Van Gulden, John A Kessler

Methods

Induced pluripotent stem cells from 2 unrelated AD patients carrying the E4 allele were corrected to the E3/E3 genotype with the CRISPR/Cas9 system and differentiated into pure cultures of forebrain excitatory neurons without contamination from other cells types.

Objective

The apolipoprotein E (APOE) E4 isoform is the strongest genetic risk factor for sporadic Alzheimer disease (AD). Although APOE is predominantly expressed by astrocytes in the central nervous system, neuronal expression of APOE is of increasing interest in age-related cognitive impairment, neurological injury, and neurodegeneration. Here, we show that endogenous expression of E4 in stem-cell-derived neurons predisposes them to injury and promotes the release of phosphorylated tau.

Results

Compared to unedited E4 neurons, E3 neurons were less susceptible to ionomycin-induced cytotoxicity. Biochemically, E4 cells exhibited increased tau phosphorylation and ERK1/2 phosphoactivation. Moreover, E4 neurons released increased amounts of phosphorylated tau extracellularly in an isoform-dependent manner by a heparin sulfate proteoglycan-dependent mechanism. Interpretation: Our results demonstrate that endogenous expression of E4 by stem-cell-derived forebrain excitatory neurons predisposes neurons to calcium dysregulation and ultimately cell death. This change is associated with increased cellular tau phosphorylation and markedly enhanced release of phosphorylated tau. Importantly, these effects are independent of glial APOE. These findings suggest that E4 accelerates spreading of tau pathology and neuron death in part by neuron-specific, glia-independent mechanisms. Ann Neurol 2019;85:726-739.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。