SUMO fosters assembly and functionality of the MutSγ complex to facilitate meiotic crossing over

SUMO 促进 MutSγ 复合物的组装和功能,从而促进减数分裂交叉

阅读:4
作者:Wei He, Gerrik F Verhees, Nikhil Bhagwat, Ye Yang, Dhananjaya S Kulkarni, Zane Lombardo, Sudipta Lahiri, Pritha Roy, Jiaming Zhuo, Brian Dang, Andriana Snyder, Shashank Shastry, Michael Moezpoor, Lilly Alocozy, Kathy Gyehyun Lee, Daniel Painter, Ishita Mukerji, Neil Hunter

Abstract

Crossing over is essential for chromosome segregation during meiosis. Protein modification by SUMO is implicated in crossover control, but pertinent targets have remained elusive. Here we identify Msh4 as a target of SUMO-mediated crossover regulation. Msh4 and Msh5 constitute the MutSγ complex, which stabilizes joint-molecule (JM) recombination intermediates and facilitates their resolution into crossovers. Msh4 SUMOylation enhances these processes to ensure that each chromosome pair acquires at least one crossover. Msh4 is directly targeted by E2 conjugase Ubc9, initially becoming mono-SUMOylated in response to DNA double-strand breaks, then multi/poly-SUMOylated forms arise as homologs fully engage. Mechanistically, SUMOylation fosters interaction between Msh4 and Msh5. We infer that initial SUMOylation of Msh4 enhances assembly of MutSγ in anticipation of JM formation, while secondary SUMOylation may promote downstream functions. Regulation of Msh4 by SUMO is distinct and independent of its previously described stabilization by phosphorylation, defining MutSγ as a hub for crossover control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。