Sodium accumulation promotes diastolic dysfunction in end-stage heart failure following Serca2 knockout

Serca2 敲除后钠积累促进终末期心力衰竭的舒张功能障碍

阅读:6
作者:William E Louch, Karina Hougen, Halvor K Mørk, Fredrik Swift, Jan M Aronsen, Ivar Sjaastad, Henrik M Reims, Borghild Roald, Kristin B Andersson, Geir Christensen, Ole M Sejersted

Abstract

Alterations in trans-sarcolemmal and sarcoplasmic reticulum (SR) Ca(2+) fluxes may contribute to impaired cardiomyocyte contraction and relaxation in heart failure. We investigated the mechanisms underlying heart failure progression in mice with conditional, cardiomyocyte-specific excision of the SR Ca(2+)-ATPase (SERCA) gene. At 4 weeks following gene deletion (4-week KO) cardiac function remained near normal values. However, end-stage heart failure developed by 7 weeks (7-week KO) as systolic and diastolic performance declined. Contractions in isolated myocytes were reduced between 4- and 7-week KO, and relaxation was slowed. Ca(2+) transients were similarly altered. Reduction in Ca(2+) transient magnitude resulted from complete loss of SR Ca(2+) release between 4- and 7-week KO, due to loss of a small remaining pool of SERCA2. Declining SR Ca(2+) release was partly offset by increased L-type Ca(2+) current, which was facilitated by AP prolongation in 7-week KO. Ca(2+) entry via reverse-mode Na(+)-Ca(2+) exchange (NCX) was also enhanced. Up-regulation of NCX and plasma membrane Ca(2+)-ATPase increased Ca(2+) extrusion rates in 4-week KO. Diastolic dysfunction in 7-week KO resulted from further SERCA2 loss, but also impaired NCX-mediated Ca(2+) extrusion following Na(+) accumulation. Reduced Na(+)-K(+)-ATPase activity contributed to the Na(+) gain. Normalizing [Na(+)] by dialysis increased the Ca(2+) decline rate in 7-week KO beyond 4-week values. Thus, while SERCA2 loss promotes both systolic and diastolic dysfunction, Na(+) accumulation additionally impairs relaxation in this model. Our observations indicate that if cytosolic Na(+) gain is prevented, up-regulated Ca(2+) extrusion mechanisms can maintain near-normal diastolic function in the absence of SERCA2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。