A nomogram based on the expression level of angiopoietin-like 4 to predict the severity of community-acquired pneumonia

根据血管生成素样蛋白4表达水平预测社区获得性肺炎严重程度的列线图

阅读:6
作者:Siqin Chen #, Jia Jiang #, Minhong Su #, Ping Chen, Xiang Liu, Wei Lei, Shaofeng Zhang, Qiang Wu, Fu Rong, Xi Li, Xiaobin Zheng, Qiang Xiao

Background

The morbidity and mortality of community-acquired pneumonia (CAP) remain high among infectious diseases. It was reported that angiopoietin-like 4 (ANGPTL4) could be a diagnostic biomarker and a therapeutic target for pneumonia. This study aimed to develop a more

Conclusion

A robust model for predicting the severity of CAP was developed based on the serum ANGPTL4 level. This may provide new insights into accurate assessment of the severity of CAP and its targeted therapy, particularly in the early-stage of the disease.

Methods

Totally, 31 non-severe community-acquired pneumonia (nsCAP) patients and 14 severe community-acquired pneumonia (sCAP) patients were enrolled in this study. The CURB-65 and pneumonia severity index (PSI) scores were calculated from the clinical data. Serum ANGPTL4 level was measured by enzyme-linked immunosorbent assay (ELISA). After screening factors by univariate analysis and receiver operating characteristic (ROC) curve analysis, multivariate logistic regression analysis of ANGPTL4 expression level and other risk factors was performed, and a nomogram was developed to predict the severity of CAP. This nomogram was further internally validated by bootstrap resampling with 1000 replications through the area under the ROC curve (AUC), the calibration curve, and the decision curve analysis (DCA). Finally, the prediction performance of the new nomogram model, CURB-65 score, and PSI score was compared by AUC, net reclassification index (NRI), and integrated discrimination improvement (IDI).

Results

A nomogram for predicting the severity of CAP was developed using three factors (C-reactive protein (CRP), procalcitonin (PCT), and ANGPTL4). According to the internal validation, the nomogram showed a great discrimination capability with an AUC of 0.910. The Hosmer-Lemeshow test and the approximately fitting calibration curve suggested a satisfactory accuracy of prediction. The results of DCA exhibited a great net benefit. The AUC values of CURB-65 score, PSI score, and the new prediction model were 0.857, 0.912, and 0.940, respectively. NRI comparing the new model with CURB-65 score was found to be statistically significant (NRI = 0.834, P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。