Development of a green reversibly photoswitchable variant of Eos fluorescent protein with fixation resistance

开发具有抗固定性的 Eos 荧光蛋白绿色可逆光切换变体

阅读:8
作者:Mitsuo Osuga, Tamako Nishimura, Shiro Suetsugu

Abstract

Superresolution microscopy determines the localization of fluorescent proteins with high precision, beyond the diffraction limit of light. Superresolution microscopic techniques include photoactivated localization microscopy (PALM), which can localize a single protein by the stochastic activation of its fluorescence. In the determination of single-molecule localization by PALM, the number of molecules that can be analyzed per image is limited. Thus, many images are required to reconstruct the localization of numerous molecules in the cell. However, most fluorescent proteins lose their fluorescence upon fixation. Here, we combined the amino acid substitutions of two Eos protein derivatives, Skylan-S and mEos4b, which are a green reversibly photoswitchable fluorescent protein (RSFP) and a fixation-resistant green-to-red photoconvertible fluorescent protein, respectively, resulting in the fixation-resistant Skylan-S (frSkylan-S), a green RSFP. The frSkylan-S protein is inactivated by excitation light and reactivated by irradiation with violet light, and retained more fluorescence after aldehyde fixation than Skylan-S. The qualities of the frSkylan-S fusion proteins were sufficiently high in PALM observations, as examined using α-tubulin and clathrin light chain. Furthermore, frSkylan-S can be combined with antibody staining for multicolor imaging. Therefore, frSkylan-S is a green fluorescent protein suitable for PALM imaging under aldehyde-fixation conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。