Evolutionary Divergence of the Wsp Signal Transduction Systems in Beta- and Gammaproteobacteria

Beta 和 Gammaproteobacteria 中 Wsp 信号转导系统的进化分歧

阅读:7
作者:Collin Kessler, Eisha Mhatre, Vaughn Cooper, Wook Kim

Abstract

Bacteria rapidly adapt to their environment by integrating external stimuli through diverse signal transduction systems. Pseudomonas aeruginosa, for example, senses surface contact through the Wsp signal transduction system to trigger the production of cyclic di-GMP. Diverse mutations in wsp genes that manifest enhanced biofilm formation are frequently reported in clinical isolates of P. aeruginosa and in biofilm studies of Pseudomonas spp. and Burkholderia cenocepacia. In contrast to the convergent phenotypes associated with comparable wsp mutations, we demonstrate that the Wsp system in B. cenocepacia does not impact intracellular cyclic di-GMP levels, unlike that in Pseudomonas spp. Our current mechanistic understanding of the Wsp system is based entirely on the study of four Pseudomonas spp., and its phylogenetic distribution remains unknown. Here, we present a broad phylogenetic analysis to show that the Wsp system originated in the betaproteobacteria and then horizontally transferred to Pseudomonas spp., the sole member of the gammaproteobacteria. Alignment of 794 independent Wsp systems with reported mutations from the literature identified key amino acid residues that fall within and outside annotated functional domains. Specific residues that are highly conserved but uniquely modified in B. cenocepacia likely define mechanistic differences among Wsp systems. We also find the greatest sequence variation in the extracellular sensory domain of WspA, indicating potential adaptations to diverse external stimuli beyond surface contact sensing. This study emphasizes the need to better understand the breadth of functional diversity of the Wsp system as a major regulator of bacterial adaptation beyond B. cenocepacia and select Pseudomonas spp. IMPORTANCE The Wsp signal transduction system serves as an important model system for studying how bacteria adapt to living in densely structured communities known as biofilms. Biofilms frequently cause chronic infections and environmental fouling, and they are very difficult to eradicate. In Pseudomonas aeruginosa, the Wsp system senses contact with a surface, which in turn activates specific genes that promote biofilm formation. We demonstrate that the Wsp system in Burkholderia cenocepacia regulates biofilm formation uniquely from that in Pseudomonas species. Furthermore, a broad phylogenetic analysis reveals the presence of the Wsp system in diverse bacterial species, and sequence analyses of 794 independent systems suggest that the core signaling components function similarly but with key differences that may alter what or how they sense. This study shows that Wsp systems are highly conserved and more broadly distributed than previously thought, and their unique differences likely reflect adaptations to distinct environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。