Does coffee consumption impact on heaviness of smoking?

喝咖啡会影响吸烟的严重程度吗?

阅读:21
作者:Jennifer J Ware, Julie-Anne Tanner, Amy E Taylor, Zhao Bin, Philip Haycock, Jack Bowden, Peter J Rogers, George Davey Smith, Rachel F Tyndale, Marcus R Munafò

Aims

Coffee consumption and cigarette smoking are strongly associated, but whether this association is causal remains unclear. We sought to: (1) determine whether coffee consumption influences cigarette smoking causally, (2) estimate the magnitude of any association and (3) explore potential mechanisms. Design: We used Mendelian randomization (MR) analyses of observational data, using publicly available summarized data from the Tobacco and Genetics (TAG) consortium, individual-level data from the UK Biobank and in-vitro experiments of candidate compounds. Setting: The TAG consortium includes data from studies in several countries. The UK Biobank includes data from men and women recruited across England, Wales and Scotland. Participants: The TAG consortium provided data on n ≤ 38 181 participants. The UK Biobank provided data on 8072 participants. Measurements: In MR analyses, the exposure was coffee consumption (cups/day) and the outcome was heaviness of smoking (cigarettes/day). In our in-vitro experiments we assessed the effect of caffeic acid, quercetin and p-coumaric acid on the rate of nicotine metabolism in human liver microsomes and cDNA-expressed human CYP2A6. Findings: Two-sample MR analyses of TAG consortium data indicated that heavier coffee consumption might lead to reduced heaviness of smoking [beta = -1.49, 95% confidence interval (CI) = -2.88 to -0.09]. However, in-vitro experiments found that the compounds investigated are unlikely to inhibit significantly the rate of nicotine metabolism following coffee consumption. Further MR analyses in UK Biobank found no evidence of a causal relationship between coffee consumption and heaviness of smoking (beta = 0.20, 95% CI = -1.72 to 2.12). Conclusions: Amount of coffee consumption is unlikely to have a major causal impact upon amount of cigarette smoking. If it does influence smoking, this is not likely to operate via effects of caffeic acid, quercetin or p-coumaric acid on nicotine metabolism. The observational association between coffee consumption and cigarette smoking may be due to smoking impacting on coffee consumption or confounding.

Background and aims

Coffee consumption and cigarette smoking are strongly associated, but whether this association is causal remains unclear. We sought to: (1) determine whether coffee consumption influences cigarette smoking causally, (2) estimate the magnitude of any association and (3) explore potential mechanisms. Design: We used Mendelian randomization (MR) analyses of observational data, using publicly available summarized data from the Tobacco and Genetics (TAG) consortium, individual-level data from the UK Biobank and in-vitro experiments of candidate compounds. Setting: The TAG consortium includes data from studies in several countries. The UK Biobank includes data from men and women recruited across England, Wales and Scotland. Participants: The TAG consortium provided data on n ≤ 38 181 participants. The UK Biobank provided data on 8072 participants. Measurements: In MR analyses, the exposure was coffee consumption (cups/day) and the outcome was heaviness of smoking (cigarettes/day). In our in-vitro experiments we assessed the effect of caffeic acid, quercetin and p-coumaric acid on the rate of nicotine metabolism in human liver microsomes and cDNA-expressed human CYP2A6. Findings: Two-sample MR analyses of TAG consortium data indicated that heavier coffee consumption might lead to reduced heaviness of smoking [beta = -1.49, 95% confidence interval (CI) = -2.88 to -0.09]. However, in-vitro experiments found that the compounds investigated are unlikely to inhibit significantly the rate of nicotine metabolism following coffee consumption. Further MR analyses in UK Biobank found no evidence of a causal relationship between coffee consumption and heaviness of smoking (beta = 0.20, 95% CI = -1.72 to 2.12). Conclusions: Amount of coffee consumption is unlikely to have a major causal impact upon amount of cigarette smoking. If it does influence smoking, this is not likely to operate via effects of caffeic acid, quercetin or p-coumaric acid on nicotine metabolism. The observational association between coffee consumption and cigarette smoking may be due to smoking impacting on coffee consumption or confounding.

Conclusions

Amount of coffee consumption is unlikely to have a major causal impact upon amount of cigarette smoking. If it does influence smoking, this is not likely to operate via effects of caffeic acid, quercetin or p-coumaric acid on nicotine metabolism. The observational association between coffee consumption and cigarette smoking may be due to smoking impacting on coffee consumption or confounding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。