Quantification of non-specific binding of magnetic micro- and nanoparticles using cell tracking velocimetry: Implication for magnetic cell separation and detection

使用细胞跟踪测速法量化磁性微粒和纳米粒子的非特异性结合:对磁性细胞分离和检测的意义

阅读:5
作者:J J Chalmers, Y Xiong, X Jin, M Shao, X Tong, S Farag, M Zborowski

Abstract

The maturation of magnetic cell separation technology places increasing demands on magnetic cell separation performance. While a number of factors can cause sub-optimal performance, one of the major challenges can be non-specific binding of magnetic nano- or microparticles to non-targeted cells. Depending on the type of separation, this non-specific binding can have a negative effect on the final purity, the recovery of the targeted cells, or both. In this work, we quantitatively demonstrate that non-specific binding of magnetic nanoparticles can impart a magnetization to cells such that these cells can be retained in a separation column and thus negatively impact the purity of the final product and the recovery of the desired cells. Through experimental data and theoretical arguments, we demonstrate that the number of MACS magnetic particles needed to impart a magnetization that is sufficient to cause non-targeted cells to be retained in the column to be on the order of 500-1,000 nanoparticles. This number of non-specifically bound particles was demonstrated experimentally with an instrument, cell tracking velocimeter, CTV, and it is demonstrated that the sensitivity of the CTV instrument for Fe atoms contained in magnetic nanoparticles on the order of 1 x 10(-15) g/mL of Fe.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。