Forecasting the length-of-stay of pediatric patients in hospitals: a scoping review

预测儿科患者住院时间:范围审查

阅读:8
作者:Natália B Medeiros, Flavio S Fogliatto, Miriam K Rocha, Guilherme L Tortorella

Background

Healthcare management faces complex challenges in allocating hospital resources, and predicting patients' length-of-stay (LOS) is critical in effectively managing those resources. This work aims to map approaches used to forecast the LOS of Pediatric Patients in Hospitals (LOS-P) and patients' populations and environments used to develop the models.

Conclusions

The studies' main benefits include informing family members about the patient's expected discharge date and enabling hospital resources' allocation and planning. Main research gaps are associated with the lack of generalization of forecasting models and limited reported applicability in hospital management. This study also provides a practical guide to LOS-P forecasting methods and a future research agenda.

Methods

Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) methodology, we performed a scoping review that identified 28 studies and analyzed them. The search was conducted on four databases (Science Direct, Scopus, Web of Science, and Medline). The identification of relevant studies was structured around three axes related to the research questions: (i) forecast models, (ii) hospital length-of-stay, and (iii) pediatric patients. Two authors carried out all stages to ensure the reliability of the review process. Articles that passed the initial screening had their data charted on a spreadsheet. Methods reported in the literature were classified according to the stage in which they are used in the modeling process: (i) pre-processing of data, (ii) variable selection, and (iii) cross-validation.

Results

Forecasting models are most often applied to newborn patients and, consequently, in neonatal intensive care units. Regression analysis is the most widely used modeling approach; techniques associated with Machine Learning are still incipient and primarily used in emergency departments to model patients in specific situations. Conclusions: The studies' main benefits include informing family members about the patient's expected discharge date and enabling hospital resources' allocation and planning. Main research gaps are associated with the lack of generalization of forecasting models and limited reported applicability in hospital management. This study also provides a practical guide to LOS-P forecasting methods and a future research agenda.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。