BOLA3 and NFU1 link mitoribosome iron-sulfur cluster assembly to multiple mitochondrial dysfunctions syndrome

BOLA3 和 NFU1 将线粒体铁硫簇组装与多发性线粒体功能障碍综合征联系起来

阅读:7
作者:Hui Zhong, Alexandre Janer, Oleh Khalimonchuk, Hana Antonicka, Eric A Shoubridge, Antoni Barrientos

Abstract

The human mitochondrial ribosome contains three [2Fe-2S] clusters whose assembly pathway, role, and implications for mitochondrial and metabolic diseases are unknown. Here, structure-function correlation studies show that the clusters play a structural role during mitoribosome assembly. To uncover the assembly pathway, we have examined the effect of silencing the expression of Fe-S cluster biosynthetic and delivery factors on mitoribosome stability. We find that the mitoribosome receives its [2Fe-2S] clusters from the GLRX5-BOLA3 node. Additionally, the assembly of the small subunit depends on the mitoribosome biogenesis factor METTL17, recently reported containing a [4Fe-4S] cluster, which we propose is inserted via the ISCA1-NFU1 node. Consistently, fibroblasts from subjects suffering from 'multiple mitochondrial dysfunction' syndrome due to mutations in BOLA3 or NFU1 display previously unrecognized attenuation of mitochondrial protein synthesis that contributes to their cellular and pathophysiological phenotypes. Finally, we report that, in addition to their structural role, one of the mitoribosomal [2Fe-2S] clusters and the [4Fe-4S] cluster in mitoribosome assembly factor METTL17 sense changes in the redox environment, thus providing a way to regulate organellar protein synthesis accordingly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。