Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis

巨噬细胞移动抑制因子是肝纤维化过程中瘢痕相关巨噬细胞募集所必需的

阅读:4
作者:Mark A Barnes, Megan R McMullen, Sanjoy Roychowdhury, Nabil Z Madhun, Kathryn Niese, Mitchell A Olman, Abram B Stavitsky, Richard Bucala, Laura E Nagy

Abstract

Recruitment of peripheral monocytes to the liver is a key contributor to the response to injury. MIF can act as a chemokine and cytokine, regulating innate immune responses in many tissues and cell types. We hypothesized that MIF contributes to the progression of CCl4-induced hepatic fibrosis by regulating recruitment of SAM. SAMs dynamically regulate HSC activation and ECM degradation. To gain insight into the role of MIF in progression of liver fibrosis, we investigated markers of fibrosis and immune responses after chronic CCl4 administration to female C57BL/6 and MIF(-/-) mice. Chronic CCl4 exposure increased activation of HSC in WT mice, indicated by increased expression of αSMA mRNA and protein, as well as mRNA for collagen 1α1; these responses were blunted in female MIF(-/-) mice. Despite lower activation of HSC in MIF(-/-) mice, accumulation of ECM was similar in WT and MIF(-/-)mice, suggesting a decreased rate of ECM degradation. Recruitment of SAMs was lower in MIF(-/-) mice compared with WT mice, both in their initial inflammatory phenotype, as well as in the later phase as proresolution macrophages. The decreased presence of resolution macrophages was associated with lower expression of MMP13 in MIF(-/-) mice. Taken together, these data indicate that MIF-dependent recruitment of SAMs contributes to degradation of ECM via MMP13, highlighting the importance of appropriate recruitment and phenotypic profile of macrophages in the resolution of fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。