The p90 ribosomal S6 kinase-UBR5 pathway controls Toll-like receptor signaling via miRNA-induced translational inhibition of tumor necrosis factor receptor-associated factor 3

p90 核糖体 S6 激酶-UBR5 通路通过 miRNA 诱导的肿瘤坏死因子受体相关因子 3 的翻译抑制来控制 Toll 样受体信号传导

阅读:8
作者:Jin Hwa Cho, Sung Ah Kim, Yeon-Soo Seo, Sung Goo Park, Byoung Chul Park, Jeong-Hoon Kim, Sunhong Kim

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. For example, miRNAs repress gene expression by recruiting the miRNA-induced silencing complex (miRISC), a ribonucleoprotein complex that contains miRNA-engaged Argonaute (Ago) and the scaffold protein GW182. Recently, ubiquitin-protein ligase E3 component N-recognin 5 (UBR5) has been identified as a component of miRISC. UBR5 directly interacts with GW182 proteins and participates in miRNA silencing by recruiting downstream effectors, such as the translation regulator DEAD-box helicase 6 (DDX6) and transducer of ERBB2,1/2,2 (Tob1/2), to the Ago-GW182 complex. However, the regulation of miRISC-associated UBR5 remains largely elusive. In the present study, we showed that UBR5 down-regulates the levels of TNF receptor-associated factor 3 (TRAF3), a key component of Toll-like receptor signaling, via the miRNA pathway. We further demonstrated that p90 ribosomal S6 kinase (p90RSK) is an upstream regulator of UBR5. p90RSK phosphorylates UBR5 at Thr637, Ser1227, and Ser2483, and this phosphorylation is required for the translational repression of TRAF3 mRNA. Phosphorylated UBR5 co-localized with GW182 and Ago2 in cytoplasmic speckles, which implies that miRISC is affected by phospho-UBR5. Collectively, these results indicated that the p90RSK-UBR5 pathway stimulates miRNA-mediated translational repression of TRAF3. Our work has added another layer to the regulation of miRISC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。