Knockdown of long noncoding RNA Malat1 aggravates hypoxia-induced cardiomyocyte injury by targeting miR-217

长链非编码 RNA Malat1 敲低通过靶向 miR-217 加重缺氧诱导的心肌细胞损伤

阅读:12
作者:Yuan Yao, Xiaoying Fan, Bo Yu, Tianfa Li, Yao Zhang

Background

Expression of long noncoding (lncRNA) Malat1 can be increased by hypoxia in cardiomyocyte. Downregulation of Malat1 contributes to the reduction of cardiomyocyte apoptosis. However, the function of Malat1 in myocardial ischemia is unclear. Objectives: This study investigated the functional role of lncRNA Malat1 in hypoxia-induced H9c2 cell injury. Material and

Conclusions

These findings suggest that Malat1 exerted important roles in hypoxia-induced cardiomyocyte injury by regulating miR-217-mediated Sirt1 and downstream PI3K/AKT and Notch signaling pathways.

Material and methods

H9c2 cells were exposed to hypoxia treatment. Cell proliferation, migration, invasion, and apoptosis were detected using trypan blue exclusion assay, two-chamber migration/invasion assay, annexin V-FITC/PI staining, and western blotting, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to analyze the expression levels of Malat1. The effects of Malat1 knockdown on cell proliferation, migration, invasion, and apoptosis were also measured. The interaction between Malat1 and microRNA-217 (miR-217) as well as miR-217 and sirtuin 1 (Sirt1) were analyzed using a dual luciferase reporter assay and qRT-PCR. Effects of miR-217 and Sirt1 on hypoxia-induced H9c2 cell growth were assessed.

Methods

H9c2 cells were exposed to hypoxia treatment. Cell proliferation, migration, invasion, and apoptosis were detected using trypan blue exclusion assay, two-chamber migration/invasion assay, annexin V-FITC/PI staining, and western blotting, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to analyze the expression levels of Malat1. The effects of Malat1 knockdown on cell proliferation, migration, invasion, and apoptosis were also measured. The interaction between Malat1 and microRNA-217 (miR-217) as well as miR-217 and sirtuin 1 (Sirt1) were analyzed using a dual luciferase reporter assay and qRT-PCR. Effects of miR-217 and Sirt1 on hypoxia-induced H9c2 cell growth were assessed.

Results

Hypoxia induced H9c2 cell injury by inhibiting cell proliferation, migration and invasion, and by promoting apoptosis. Hypoxia significantly enhanced the expression of Malat1. Malat1 bound to miR-217 and Sirt1 was a direct target of miR-217. Knockdown of Malat1 aggravated hypoxia-induced H9c2 cell injury by overexpression of miR-217. Overexpression of Sirt1 alleviated H9c2 cell injury by activating phosphatidylinositol 3-kinase/protein kinase 3 (PI3K/AKT) and Notch signaling pathways. Conclusions: These findings suggest that Malat1 exerted important roles in hypoxia-induced cardiomyocyte injury by regulating miR-217-mediated Sirt1 and downstream PI3K/AKT and Notch signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。