Down-regulation of microRNA-31-5p inhibits proliferation and invasion of osteosarcoma cells through Wnt/β-catenin signaling pathway by enhancing AXIN1

microRNA-31-5p下调通过增强AXIN1通过Wnt/β-catenin信号通路抑制骨肉瘤细胞增殖和侵袭

阅读:4
作者:Xue Chen, Lili Zhong, Xijing Li, Wenping Liu, Yinlong Zhao, Junfeng Li

Conclusions

All in all, repression of miR-31-5p targets AXIN1 to activate the Wnt/β-catenin signaling pathway, thus suppressing proliferation, invasion and tumorigenicity of OS cells.

Methods

Firstly, microarray expression profiles were used to screen differentially expressed miRNAs associated with OS. Next, OS and normal fibrous connective tissues as well as OS cell lines were obtained for investigating the role of miR-31-5p on OS. Then, the putative binding sites between miR-31-5p and AXIN1 were predicted and verified. The regulatory effects of miR-31-5p on proliferation and invasion as well as tumorigenic potential of OS cells targeting AXIN1 were also analyzed. Besides, the relationship between miR-31-5p and Wnt/β-catenin signaling pathway was assessed by immunofluorescence staining.

Results

The microarray dataset GSE63939 showed that miR-31-5p and AXIN1 were involved in OS. miR-31-5p expression increased while the expression of AXIN1 decreased in OS tissues and cells. AXIN1 was identified as a target gene of miR-31-5p, intense expression of which inhibited the transcription of AXIN1. Down-regulated miR-31-5p suppressed proliferation, invasion and tumorigenicity of OS cells through promoting AXIN1. Decreased miR-31-5p activated Wnt/β-catenin signaling pathway, as reflected by increased β-catenin translocation into nuclei, through up-regulating the transcription of AXIN1. Conclusions: All in all, repression of miR-31-5p targets AXIN1 to activate the Wnt/β-catenin signaling pathway, thus suppressing proliferation, invasion and tumorigenicity of OS cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。