Conclusions
All in all, repression of miR-31-5p targets AXIN1 to activate the Wnt/β-catenin signaling pathway, thus suppressing proliferation, invasion and tumorigenicity of OS cells.
Methods
Firstly, microarray expression profiles were used to screen differentially expressed miRNAs associated with OS. Next, OS and normal fibrous connective tissues as well as OS cell lines were obtained for investigating the role of miR-31-5p on OS. Then, the putative binding sites between miR-31-5p and AXIN1 were predicted and verified. The regulatory effects of miR-31-5p on proliferation and invasion as well as tumorigenic potential of OS cells targeting AXIN1 were also analyzed. Besides, the relationship between miR-31-5p and Wnt/β-catenin signaling pathway was assessed by immunofluorescence staining.
Results
The microarray dataset GSE63939 showed that miR-31-5p and AXIN1 were involved in OS. miR-31-5p expression increased while the expression of AXIN1 decreased in OS tissues and cells. AXIN1 was identified as a target gene of miR-31-5p, intense expression of which inhibited the transcription of AXIN1. Down-regulated miR-31-5p suppressed proliferation, invasion and tumorigenicity of OS cells through promoting AXIN1. Decreased miR-31-5p activated Wnt/β-catenin signaling pathway, as reflected by increased β-catenin translocation into nuclei, through up-regulating the transcription of AXIN1. Conclusions: All in all, repression of miR-31-5p targets AXIN1 to activate the Wnt/β-catenin signaling pathway, thus suppressing proliferation, invasion and tumorigenicity of OS cells.
