APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion

APMAP 与赖氨酰氧化酶样蛋白相互作用,Apmap 的破坏可导致有益的内脏脂肪组织扩张

阅读:5
作者:Ariane R Pessentheiner, Katharina Huber, Helmut J Pelzmann, Andreas Prokesch, Franz P W Radner, Heimo Wolinski, Josefine Lindroos-Christensen, Gerald Hoefler, Thomas Rülicke, Ruth Birner-Gruenberger, Martin Bilban, Juliane G Bogner-Strauss

Abstract

Adipocyte plasma membrane-associated protein (APMAP) has been described as an adipogenic factor in 3T3-L1 cells with unknown biochemical function; we therefore aimed to investigate the physiologic function of APMAP in vivo We generated Apmap-knockout mice and challenged them with an obesogenic diet to investigate their metabolic phenotype. We identified a novel truncated adipocyte-specific isoform of APMAP in mice that is produced by alternative transcription. Mice lacking the full-length APMAP protein, the only isoform that is expressed in humans, have an improved metabolic phenotype upon diet-induced obesity, indicated by enhanced insulin sensitivity, preserved glucose tolerance, increased respiratory exchange ratio, decreased inflammatory marker gene expression, and reduced adipocyte size. At the molecular level, APMAP interacts with the extracellular collagen cross-linking matrix proteins lysyl oxidase-like 1 and 3. On a high-fat diet, the expression of lysyl oxidase-like 1 and 3 is strongly decreased in Apmap-knockout mice, paralleled by reduced expression of profibrotic collagens and total collagen content in epididymal white adipose tissue, indicating decreased fibrotic potential. Together, our data suggest that APMAP is a novel regulator of extracellular matrix components, and establish that APMAP is a potential target to mitigate obesity-associated insulin resistance.-Pessentheiner, A. R., Huber, K., Pelzmann, H. J., Prokesch, A., Radner, F. P. W., Wolinski, H., Lindroos-Christensen, J., Hoefler, G., Rülicke, T., Birner-Gruenberger, R., Bilban, M., Bogner-Strauss, J. G. APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。