GSK-3 represses growth factor-inducible genes by inhibiting NF-kappaB in quiescent cells

GSK-3 通过抑制静止细胞中的 NF-κB 来抑制生长因子诱导基因

阅读:7
作者:Julie R Graham, John W Tullai, Geoffrey M Cooper

Abstract

GSK-3 is active in the absence of growth factor stimulation and generally acts to induce apoptosis or inhibit cell proliferation. We previously identified a subset of growth factor-inducible genes that can also be induced in quiescent T98G cells solely by inhibition of GSK-3 in the absence of growth factor stimulation. Computational predictions verified by chromatin immunoprecipitation assays identified NF-kappaB binding sites in the upstream regions of 75% of the genes regulated by GSK-3. p50 bound to most of these sites in quiescent cells, and for one-third of the genes, binding of p65 to the predicted sites increased upon inhibition of GSK-3. The functional role of p65 in gene induction following inhibition of GSK-3 was demonstrated by RNA interference experiments. Furthermore, inhibition of GSK-3 in quiescent cells resulted in activation of IkappaB kinase, leading to phosphorylation and degradation of IkappaB alpha and nuclear translocation of p65 and p50. Taken together, these results indicate that the high levels of GSK-3 activity in quiescent cells repress gene expression by negatively regulating NF-kappaB through inhibition of IkappaB kinase. This inhibition of NF-kappaB is consistent with the role of GSK-3 in the induction of apoptosis or cell cycle arrest in cells deprived of growth factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。