Effects of dietary methionine on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis of on-growing grass carp (Ctenopharyngodon idella)

饲料蛋氨酸对草鱼生长性能、肌肉营养沉积、肌纤维生长和I型胶原合成的影响

阅读:11
作者:Chuang-Chuang Fang #, Lin Feng #, Wei-Dan Jiang, Pei Wu, Yang Liu, Sheng-Yao Kuang, Ling Tang, Xiang-An Liu, Xiao-Qiu Zhou

Abstract

In the current research, a 60-d experiment was conducted with the purpose of exploring the impacts of methionine (Met) on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis as well as the related signalling pathway. Six diets (iso-nitrogenous) differing in Met concentrations (2·54, 4·85, 7·43, 10·12, 12·40 and 15·11 g/kg diets) were fed to 540 grass carp (178·47 (SD 0·36) g). Results showed (P < 0·05) that compared with Met deficiency, optimal level of dietary Met (1) increased feed intake, feed efficiency, specific growth rate and percentage weight gain (PWG); (2) increased fish muscle protein, lipid and free amino acid contents and improved fish muscle fatty acid profile as well as increased protein content in part associated with the target of rapamycin complex 1 (TORC1)/S6K1 signalling pathway; (3) increased the frequency distribution of muscle fibre with >50 µm of diameter; (4) increased type I collagen synthesis partly related to the transforming growth factor-β1/Smads and CK2/TORC1 signalling pathways. In conclusion, dietary Met improved muscle growth, which might be due to the regulation of muscle nutritive deposition, muscle fibre growth and type I collagen synthesis-related signal molecules. Finally, according to PWG and muscle collagen content, the Met requirements for on-growing grass carp (178-626 g) were estimated to be 9·56 g/kg diet (33·26 g/kg protein of diet) and 9·28 g/kg diet (32·29 g/kg of dietary protein), respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。