Mice lacking dystrophin or alpha sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts

缺乏肌营养不良蛋白或α-肌聚糖的小鼠会自发发展出胚胎性横纹肌肉瘤,伴有癌症相关的p53突变和选择性剪接或突变的Mdm2转录本。

阅读:2
作者:Karen Fernandez ,Yelda Serinagaoglu, Sue Hammond, Laura T Martin, Paul T Martin

Abstract

Altered expression of proteins in the dystrophin-associated glycoprotein complex results in muscular dystrophy and has more recently been implicated in a number of forms of cancer. Here we show that loss of either of two members of this complex, dystrophin in mdx mice or alpha sarcoglycan in Sgca(-/-) mice, results in the spontaneous development of muscle-derived embryonal rhabdomyosarcoma (RMS) after 1 year of age. Many mdx and Sgca(-/-) tumors showed increased expression of insulin-like growth factor 2, retinoblastoma protein, and phosphorylated Akt and decreased expression of phosphatase and tensin homolog gene, much as is found in a human RMS. Further, all mdx and Sgca(-/-) RMS analyzed had increased expression of p53 and murine double minute (mdm)2 protein and contained missense p53 mutations previously identified in human cancers. The mdx RMS also contained missense mutations in Mdm2 or alternatively spliced Mdm2 transcripts that lacked an exon encoding a portion of the p53-binding domain. No Pax3:Fkhr or Pax7:Fkhr translocation mRNA products were evident in any tumor. Expression of natively glycosylated alpha dystroglycan and alpha sarcoglycan was reduced in mdx RMS, whereas dystrophin expression was absent in almost all human RMS, both for embryonal and alveolar RMS subtypes. These studies show that absence of members of the dystrophin-associated glycoprotein complex constitutes a permissive environment for spontaneous development of embryonal RMS associated with mutation of p53 and mutation or altered splicing of Mdm2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。