Seismic refraction tracks porosity generation and possible CO2 production at depth under a headwater catchment

地震折射追踪了水源集水区深处孔隙度的产生和可能的二氧化碳生成

阅读:4
作者:Xin Gu, Gary Mavko, Lisa Ma, David Oakley, Natalie Accardo, Bradley J Carr, Andrew A Nyblade, Susan L Brantley

Abstract

In weathered bedrock aquifers, groundwater is stored in pores and fractures that open as rocks are exhumed and minerals interact with meteoric fluids. Little is known about this storage because geochemical and geophysical observations are limited to pits, boreholes, or outcrops or to inferences based on indirect measurements between these sites. We trained a rock physics model to borehole observations in a well-constrained ridge and valley landscape and then interpreted spatial variations in seismic refraction velocities. We discovered that P-wave velocities track where a porosity-generating reaction initiates in shale in three boreholes across the landscape. Specifically, velocities of 2.7 ± 0.2 km/s correspond with growth of porosity from dissolution of chlorite, the most reactive of the abundant minerals in the shale. In addition, sonic velocities are consistent with the presence of gas bubbles beneath the water table under valley and ridge. We attribute this gas largely to CO2 produced by 1) microbial respiration in soils as meteoric waters recharge into the subsurface and 2) the coupled carbonate dissolution and pyrite oxidation at depth in the rock. Bubbles may nucleate below the water table because waters depressurize as they flow from ridge to valley and because pores have dilated as the deep rock has been exhumed by erosion. Many of these observations are likely to also describe the weathering and flow path patterns in other headwater landscapes. Such combined geophysical and geochemical observations will help constrain models predicting flow, storage, and reaction of groundwater in bedrock systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。