Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53

精氨琥珀酸合酶 1 是一种由 p53 反式激活的内在 Akt 阻遏物

阅读:4
作者:Takafumi Miyamoto, Paulisally Hau Yi Lo, Naomi Saichi, Koji Ueda, Makoto Hirata, Chizu Tanikawa, Koichi Matsuda

Abstract

The transcription factor p53 is at the core of a built-in tumor suppression system that responds to varying degrees of stress input and is deregulated in most human cancers. Befitting its role in maintaining cellular fitness and fidelity, p53 regulates an appropriate set of target genes in response to cellular stresses. However, a comprehensive understanding of this scheme has not been accomplished. We show that argininosuccinate synthase 1 (ASS1), a citrulline-aspartate ligase in de novo arginine synthesis pathway, was directly transactivated by p53 in response to genotoxic stress, resulting in the rearrangement of arginine metabolism. Furthermore, we found that x-ray irradiation promoted the systemic induction of Ass1 and concomitantly increased plasma arginine levels in p53+/+ mice but not in p53-/- mice. Notably, Ass1+/- mice exhibited hypersensitivity to whole-body irradiation owing to increased apoptosis in the small intestinal crypts. Analyses of ASS1-deficient cells generated using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) system revealed that ASS1 plays a pivotal role in limiting Akt phosphorylation. In addition, aberrant activation of Akt resulting from ASS1 loss disrupted Akt-mediated cell survival signaling activity under genotoxic stress. Building on these results, we demonstrated that p53 induced an intrinsic Akt repressor, ASS1, and the perturbation of ASS1 expression rendered cells susceptible to genotoxic stress. Our findings uncover a new function of p53 in the regulation of Akt signaling and reveal how p53, ASS1, and Akt are interrelated to each other.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。