Electroacupuncture Improves Intestinal Motility through Exosomal miR-34c-5p Targeting SCF/c-Kit Signaling Pathway in Slow Transit Constipation Model Rats

电针通过外泌体 miR-34c-5p 靶向 SCF/c-Kit 信号通路改善慢传输型便秘模型大鼠的肠道蠕动

阅读:5
作者:Hongjun Kuang, Chengshun Zhang, Wei Zhang, Huzhi Cai, Layuan Yang, Nan Yuan, Yangyang Yuan, Yutao Yang, Chuanyi Zuo, Feng Zhong

Background

The pathogenesis of slow transit constipation (STC) is associated with exosomal miR-34c-5p. Electroacupuncture (EA) improves gastrointestinal motility in gastrointestinal disorders, especially STC. Our study aimed to explore the mechanism by which EA improves intestinal motility by modulating the release of exosomes and the transmission of exosomal miR-34c-5p.

Conclusion

Our results indicated that EA improves intestinal motility in STC rats by transporting of exosomal miR-34c-5p targeting the SCF/c-Kit signaling pathway.

Methods

Fifty rats were randomly divided into five groups. STC model rats were induced, and GW4869, the exosome release inhibitor, was used to inhibit the release of exosome. The serum exosomes were authenticated under a transmission electron microscope and nanoparticle tracking analysis. RT-qPCR detected the expression of miR-34c-5p in serum exosomes and colonic tissues. The fecal number in 24 hours, Bristol scores, and intestinal transit rates were used to assess intestinal motility. Subsequently, hematoxylin and eosin (H&E) staining was used to examine the colonic mucosal histology. Finally, the expression of stem cell factor (SCF) and receptor tyrosine kinase (c-Kit) protein was measured using immunohistochemistry staining.

Results

We found that EA upregulated exosomal miR-34c-5p in serum and downregulated miR-34c-5p in colonic tissues (P < 0.01). EA improved fecal numbers in 24 hours, Bristol scores, and intestinal transit rates in STC rats (P < 0.01). EA recovered the colonic histological structure and enhanced the expression of SCF and c-Kit protein (P < 0.01). The therapeutic effect of EA was attenuated after inhibiting the release of the exosome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。