Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway

肠道微生物组衍生的乳酸通过 GPR81 受体介导的脂质代谢途径促进焦虑样行为

阅读:6
作者:Baixi Shan, Zhifu Ai, Sufen Zeng, Yonggui Song, Jiagui Song, Qiang Zeng, Zhou Liao, Tingting Wang, Chao Huang, Dan Su

Abstract

Accumulating evidence suggests that chronic stress could perturb the composition of the gut microbiota and induce host anxiety- and depression-like behaviors. In particular, microorganism-derived products that can directly or indirectly signal to the nervous system. This study sought to investigate whether high levels of Lactobacillus and lactate in the gut of rats under chronic unpredictable stress (CUS) were the factors leading to anxiety behavior. We collected faeces and blood samples in a sterile laboratory bench to study the microbiome and plasma metabolome from adult male rats age and environment matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rRNA gene from faeces samples. UPLC-MS metabolomics were used to examine plasma samples. Search for potential biomarkers by combining the different data types. Finally, we found a regulated signaling pathway through the relative expression of protein and mRNA. Both lactate feeding and fecal microbiota transplantation caused behavioral abnormalities such as psychomotor malaise, impaired learning and memory in the recipient animals. These rats also showed inhibition of the adenylate cyclase (AC)-protein kinase A (PKA) pathway of lipolysis after activation of G protein-coupled receptor 81 (GPR81) by lactate in the liver, as well as increased tumor necrosis factor α (TNF-α), compared with healthy controls. Furthermore, we showed that sphingosine-1-phosphate receptor 2 (S1PR2) protein expression in hippocampus was reduced in chronic unpredictable stress compared to control group and its expression negatively correlates with symptom severity. Our study suggest that the gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。