Eobania vermiculata whole-body muscle extract-loaded chitosan nanoparticles enhanced skin regeneration and decreased pro-inflammatory cytokines in vivo

载有 Eobania vermiculata 全身肌肉提取物的壳聚糖纳米粒子可增强皮肤再生并降低体内促炎细胞因子

阅读:4
作者:Alyaa Farid, Adham Ooda, Ahmed Nabil, Areej Nasser, Esraa Ahmed, Fatma Ali, Fatma Mohamed, Habiba Farid, Mai Badran, Mariam Ahmed, Mariam Ibrahim, Mariam Rasmy, Martina Saleeb, Vereena Riad, Yousr Ibrahim, Neveen Madbouly

Background

Usually, wounds recover in four to six weeks. Wounds that take longer time than this to heal are referred to as chronic wounds. Impaired healing can be caused by several circumstances like hypoxia, microbial colonization, deficiency of blood flow, reperfusion damage, abnormal cellular reaction and deficiencies in collagen production. Treatment of wounds can be enhanced through systemic injection of the antibacterial drugs and/or other topical applications of medications. However, there are a number of disadvantages to these techniques, including the limited or insufficient medication penetration into the underlying skin tissue and the development of bacterial resistance with repeated antibiotic treatment. One of the more recent treatment options may involve using nanotherapeutics in combination with naturally occurring biological components, such as snail extracts (SE). In this investigation, chitosan nanoparticles (CS NPs) were loaded with an Eobania vermiculata whole-body muscle extract. The safety of the synthesized NPs was investigated in vitro to determine if these NPs might be utilized to treat full-skin induced wounds in vivo.

Conclusions

The nanostructure enabled bioactive SE components to pass through cell membranes and exhibit their antioxidant and anti-inflammatory actions, accelerating the healing process of wounds. Finally, it is advised to treat rats' wounds with SE-CS NPs.

Results

SEM and TEM images showed uniformly distributed, spherical, smooth prepared CS NPs and snail extract-loaded chitosan nanoparticles (SE-CS NPs) with size ranges of 76-81 and 91-95 nm, respectively. The zeta potential of the synthesized SE-CS NPs was - 24.5 mV, while that of the CS NPs was 25 mV. SE-CS NPs showed a remarkable, in vitro, antioxidant, anti-inflammatory and antimicrobial activities. Successfully, SE-CS NPs (50 mg/kg) reduced the oxidative stress marker (malondialdehyde), reduced inflammation, increased the levels of the antioxidant enzymes (superoxide dismutase and glutathione), and assisted the healing of induced wounds. SE-CS NPs (50 mg/kg) can be recommended to treat induced wounds safely. SE was composed of a collection of several wound healing bioactive components [fatty acids, amino acids, minerals and vitamins) that were loaded on CS NPs. Conclusions: The nanostructure enabled bioactive SE components to pass through cell membranes and exhibit their antioxidant and anti-inflammatory actions, accelerating the healing process of wounds. Finally, it is advised to treat rats' wounds with SE-CS NPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。