α(2A) adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction

α(2A) 肾上腺素受体通过破坏 APP-SorLA 相互作用促进淀粉样变性

阅读:5
作者:Yunjia Chen, Yin Peng, Pulin Che, Mary Gannon, Yin Liu, Ling Li, Guojun Bu, Thomas van Groen, Kai Jiao, Qin Wang

Abstract

Accumulation of amyloid β (Aβ) peptides in the brain is the key pathogenic factor driving Alzheimer's disease (AD). Endocytic sorting of amyloid precursor protein (APP) mediated by the vacuolar protein sorting (Vps10) family of receptors plays a decisive role in controlling the outcome of APP proteolytic processing and Aβ generation. Here we report for the first time to our knowledge that this process is regulated by a G protein-coupled receptor, the α(2A) adrenergic receptor (α(2A)AR). Genetic deficiency of the α(2A)AR significantly reduces, whereas stimulation of this receptor enhances, Aβ generation and AD-related pathology. Activation of α(2A)AR signaling disrupts APP interaction with a Vps10 family receptor, sorting-related receptor with A repeat (SorLA), in cells and in the mouse brain. As a consequence, activation of α(2A)AR reduces Golgi localization of APP and concurrently promotes APP distribution in endosomes and cleavage by β secretase. The α(2A)AR is a key component of the brain noradrenergic system. Profound noradrenergic dysfunction occurs consistently in patients at the early stages of AD. α(2A)AR-promoted Aβ generation provides a novel mechanism underlying the connection between noradrenergic dysfunction and AD. Our study also suggests α(2A)AR as a previously unappreciated therapeutic target for AD. Significantly, pharmacological blockade of the α(2A)AR by a clinically used antagonist reduces AD-related pathology and ameliorates cognitive deficits in an AD transgenic model, suggesting that repurposing clinical α(2A)R antagonists would be an effective therapeutic strategy for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。