Design of experiments (DOE) is an established method to allocate resources for efficient parameter space exploration. Model based active learning (AL) data sampling strategies have shown potential for further optimization. This paper introduces a workflow for conducting DOE comparative studies using automated machine learning. Based on a practical definition of model complexity in the context of machine learning, the interplay of systematic data generation and model performance is examined considering various sources of uncertainty: this includes uncertainties caused by stochastic sampling strategies, imprecise data, suboptimal modeling, and model evaluation. Results obtained from electrical circuit models with varying complexity show that not all AL sampling strategies outperform conventional DOE strategies, depending on the available data volume, the complexity of the dataset, and data uncertainties. Trade-offs in resource allocation strategies, in particular between identical replication of data points for statistical noise reduction and broad sampling for maximum parameter space exploration, and their impact on subsequent machine learning analysis are systematically investigated. Results indicate that replication oriented strategies should not be dismissed but may prove advantageous for cases with non-negligible noise impact and intermediate resource availability. The provided workflow can be used to simulate practical experimental conditions for DOE testing and DOE selection.
AutoML based workflow for design of experiments (DOE) selection and benchmarking data acquisition strategies with simulation models.
阅读:3
作者:Xu Xukuan, Li Donghui, Bi Jinghou, Moeckel Michael
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 31; 14(1):32170 |
| doi: | 10.1038/s41598-024-83581-3 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
