Optical coherence tomography angiography (OCTA) is a major advancement in imaging, offering high-resolution microvascular volumetric images crucial for diagnosing and studying dermatological diseases. However, current data analysis and clinical evaluation criteria primarily rely on 2-dimensional (2D) imaging results, resulting in imprecise diagnoses due to the substantial loss of 3D curved structures and microvascular details. To address this issue, we propose a high-fidelity 3D curved processing workflow that integrates an artificial neural network (ANN) with a 3D denoising algorithm based on the curvelet transform and optimal orientation flow (OOF). This innovative workflow enables precise 3D segmentation and accurate quantification of dermal layer microvasculature in atopic dermatitis (AD) in vivo. Furthermore, the use of 3D multiparametric microvasculature quantitative metrics establishes a robust framework for assessing the efficacy of AD treatments in 3D images. Our study results demonstrate that skin structure imaging and the dynamic evolution of 3D microvasculature align with observed pathological changes. Compared to traditional 2D analysis, the maximum variation rate of 3D curved multiparametric information is approximately 10%. Consequently, our research marks a significant advancement in the accurate quantification of microvasculature in AD development and theranostics, paving the way for the clinical application of OCTA in dermatology.
Three-Dimensional Curved Workflow-Based Optical Coherence Tomography Angiography for Enhancing Atopic Dermatitis Theranostics.
阅读:10
作者:Li Junwei, Zhang Yunrui, Huang Ying, Li Ronghui, Wang Kun, Guo Dongbei, Huang Zicheng, Yao Youliang, Xue Yunxin, Sun Guibo, Jiang Cheng, Wang Leyun, Li Chenzhong, Zhao Qingliang
| 期刊: | Research (Wash D C) | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 6; 8:0778 |
| doi: | 10.34133/research.0778 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
