In this work, we present a workflow to construct generic and robust generative image priors from magnitude-only images. The priors can then be used for regularization in reconstruction to improve image quality. The workflow begins with the preparation of training datasets from magnitude-only magnetic resonance (MR) images. This dataset is then augmented with phase information and used to train generative priors of complex images. Finally, trained priors are evaluated using both linear and nonlinear reconstruction for compressed sensing parallel imaging with various undersampling schemes. The results of our experiments demonstrate that priors trained on complex images outperform priors trained only on magnitude images. In addition, a prior trained on a larger dataset exhibits higher robustness. Finally, we show that the generative priors are superior to [Formula: see text]-wavelet regularization for compressed sensing parallel imaging with high undersampling. These findings stress the importance of incorporating phase information and leveraging large datasets to raise the performance and reliability of the generative priors for MR imaging (MRI) reconstruction. Phase augmentation makes it possible to use existing image databases for training.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.
Generative priors for MRI reconstruction trained from magnitude-only images using phase augmentation.
阅读:14
作者:Luo Guanxiong, Wang Xiaoqing, Blumenthal Moritz, Schilling Martin, Kotikalapudi Raviteja, Rauf Erik, Focke Niels, Uecker Martin
| 期刊: | Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 19; 383(2299):20240323 |
| doi: | 10.1098/rsta.2024.0323 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
