Machine learning and complex network analysis of drug effects on neuronal microelectrode biosensor data.

阅读:3
作者:Ciba Manuel, Petzold Marc, Alves Caroline L, Rodrigues Francisco A, Jimbo Yasuhiko, Thielemann Christiane
Biosensors, such as microelectrode arrays that record in vitro neuronal activity, provide powerful platforms for studying neuroactive substances. This study presents a machine learning workflow to analyze drug-induced changes in neuronal biosensor data using complex network measures from graph theory. Microelectrode array recordings of neuronal networks exposed to bicuculline, a GABA[Formula: see text] receptor antagonist known to induce hypersynchrony, demonstrated the workflow's ability to detect and characterize pharmacological effects. The workflow integrates network-based features with synchrony, optimizing preprocessing parameters, including spike train bin sizes, segmentation window sizes, and correlation methods. It achieved high classification accuracy (AUC up to 90%) and used Shapley Additive Explanations to interpret feature importance rankings. Significant reductions in network complexity and segregation, hallmarks of epileptiform activity induced by bicuculline, were revealed. While bicuculline's effects are well established, this framework is designed to be broadly applicable for detecting both strong and subtle network alterations induced by neuroactive compounds. The results demonstrate the potential of this methodology for advancing biosensor applications in neuropharmacology and drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。