With the rapid advancement of large-scale model technologies, AI agent frameworks built on foundation models have become a central focus of artificial-intelligence research. In cloud-edge-end collaborative computing frameworks, efficient workflow scheduling is essential to reducing both server energy consumption and overall makespan. This paper addresses this challenge by proposing an Improved Multi-Objective Memetic Algorithm (IMOMA) that simultaneously optimizes energy consumption and makespan. First, a multi-objective optimization model incorporating task execution constraints and priority constraints is developed, and complexity analysis confirms its NP-hard nature. Second, the IMOMA algorithm enhances population diversity through dynamic opposition-based learning, introduces local search operators tailored for bi-objective optimization, and maintains Pareto optimal solutions via an elite archive. A dynamic selection mechanism based on operator historical performance and an adaptive local search triggering strategy effectively balance global exploration and local exploitation capabilities. Experimental results on 10 standard datasets demonstrate that IMOMA achieves improvements of 93%, 7%, and 19% in hypervolume and 58%, 1%, and 23% in inverted generational distance compared to MOPSO, NSGA-II, and SPEA-II algorithms. Additionally, ablation experiments reveal the influence mechanisms of scheduling strategies, server configurations, and other constraints on optimization objectives, providing an engineering-oriented solution for real-world cloud-edge-end collaborative scenarios.
Efficient workflow scheduling using an improved multi-objective memetic algorithm in cloud-edge-end collaborative framework.
阅读:3
作者:Cui Guangzhang, Zhang Wei, Xu Weiwei, Bao Hujun
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 15(1):29754 |
| doi: | 10.1038/s41598-025-08691-y | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
