The ever-growing global health threat of antibiotic resistance is compelling researchers to explore alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) are emerging as a promising solution to fill this need. Naturally occurring AMPs are produced by all forms of life as part of the innate immune system. High-throughput bioinformatics tools have enabled fast and large-scale discovery of AMPs from genomic, transcriptomic, and proteomic resources of selected organisms. Public protein sequence databases, comprising over 200âmillion records and growing, serve as comprehensive compendia of sequences from a broad range of source organisms. Yet, large-scale in silico probing of those databases for novel AMP discovery using modern deep learning techniques has rarely been reported. In the present study, we propose an AMP mining workflow to predict novel AMPs from the UniProtKB/Swiss-Prot database using the AMP prediction tool, AMPlify, as its discovery engine. Using this workflow, we identified 8008 novel putative AMPs from all eukaryotic sequences in the database. Focusing on the practical use of AMPs as suitable antimicrobial agents with applications in the poultry industry, we prioritized 40 of those AMPs based on their similarities to known chicken AMPs in predicted structures. In our tests, 13 out of the 38 successfully synthesized peptides showed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. AMPlify and the companion scripts supporting the AMP mining workflow presented herein are publicly available at https://github.com/bcgsc/AMPlify.
Mining the UniProtKB/Swiss-Prot database for antimicrobial peptides.
阅读:8
作者:Li Chenkai, Sutherland Darcy, Salehi Ali, Richter Amelia, Lin Diana, Aninta Sambina Islam, Ebrahimikondori Hossein, Yanai Anat, Coombe Lauren, Warren René L, Kotkoff Monica, Hoang Linda M N, Helbing Caren C, Birol Inanc
| 期刊: | Protein Science | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 Apr;34(4):e70083 |
| doi: | 10.1002/pro.70083 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
