Mining the UniProtKB/Swiss-Prot database for antimicrobial peptides.

阅读:18
作者:Li Chenkai, Sutherland Darcy, Salehi Ali, Richter Amelia, Lin Diana, Aninta Sambina Islam, Ebrahimikondori Hossein, Yanai Anat, Coombe Lauren, Warren René L, Kotkoff Monica, Hoang Linda M N, Helbing Caren C, Birol Inanc
The ever-growing global health threat of antibiotic resistance is compelling researchers to explore alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) are emerging as a promising solution to fill this need. Naturally occurring AMPs are produced by all forms of life as part of the innate immune system. High-throughput bioinformatics tools have enabled fast and large-scale discovery of AMPs from genomic, transcriptomic, and proteomic resources of selected organisms. Public protein sequence databases, comprising over 200 million records and growing, serve as comprehensive compendia of sequences from a broad range of source organisms. Yet, large-scale in silico probing of those databases for novel AMP discovery using modern deep learning techniques has rarely been reported. In the present study, we propose an AMP mining workflow to predict novel AMPs from the UniProtKB/Swiss-Prot database using the AMP prediction tool, AMPlify, as its discovery engine. Using this workflow, we identified 8008 novel putative AMPs from all eukaryotic sequences in the database. Focusing on the practical use of AMPs as suitable antimicrobial agents with applications in the poultry industry, we prioritized 40 of those AMPs based on their similarities to known chicken AMPs in predicted structures. In our tests, 13 out of the 38 successfully synthesized peptides showed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. AMPlify and the companion scripts supporting the AMP mining workflow presented herein are publicly available at https://github.com/bcgsc/AMPlify.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。