Optimized proteomic analysis of a mouse model of cerebellar dysfunction using amine-specific isobaric tags.

阅读:3
作者:Hu Jun, Qian Jin, Borisov Oleg, Pan Sanqiang, Li Yan, Liu Tong, Deng Longwen, Wannemacher Kenneth, Kurnellas Michael, Patterson Christa, Elkabes Stella, Li Hong
Recent proteomic applications have demonstrated their potential for revealing the molecular mechanisms underlying neurodegeneration. The present study quantifies cerebellar protein changes in mice that are deficient in plasma membrane calcium ATPase 2 (PMCA2), an essential neuronal pump that extrudes calcium from cells and is abundantly expressed in Purkinje neurons. PMCA2-null mice display motor dyscoordination and unsteady gait deficits observed in neurological diseases such as multiple sclerosis and ataxia. We optimized an amine-specific isobaric tags (iTRAQ)-based shotgun proteomics workflow for this study. This workflow took consideration of analytical variance as a function of ion signal intensity and employed biological repeats to aid noise reduction. Even with stringent protein identification criteria, we could reliably quantify nearly 1000 proteins, including many neuronal proteins that are important for synaptic function. We identified 21 proteins that were differentially expressed in PMCA2-null mice. These proteins are involved in calcium homeostasis, cell structure and chromosome organization. Our findings shed light on the molecular changes that underlie the neurological deficits observed in PMCA2-null mice. The optimized workflow presented here will be valuable for others who plan to implement the iTRAQ method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。