Drug design is a time-consuming and cumbersome process due to the vast search space of drug-like molecules and the difficulty of investigating atomic and electronic interactions. The present paper proposes a computational drug design workflow that combines artificial intelligence (AI) methods, i.e., an evolutionary algorithm and artificial neural network model, and molecular dynamics (MD) simulations to design and evaluate potential drug candidates. For the purpose of illustration, the proposed workflow was applied to design drug candidates against the main protease of severe acute respiratory syndrome coronavirus 2. From the â¼140,000 molecules designed using AI methods, MD analysis identified two molecules as potential drug candidates.
Design of SARS-CoV-2 Main Protease Inhibitors Using Artificial Intelligence and Molecular Dynamic Simulations.
阅读:3
作者:Elend Lars, Jacobsen Luise, Cofala Tim, Prellberg Jonas, Teusch Thomas, Kramer Oliver, Solov'yov Ilia A
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2022 | 起止号: | 2022 Jun 22; 27(13):4020 |
| doi: | 10.3390/molecules27134020 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
