We have recently developed a charge inversion ion/ion reaction to selectively derivatize phosphatidylserine lipids via gas-phase Schiff base formation. This tandem mass spectrometry (MS/MS) workflow enables the separation and detection of isobaric lipids in imaging mass spectrometry, but the images acquired using this workflow are limited to relatively poor spatial resolutions due to the current time and limit of detection requirements for these ion/ion reaction imaging mass spectrometry experiments. This trade-off between chemical specificity and spatial resolution can be overcome by using computational image fusion, which combines complementary information from multiple images. Herein, we demonstrate a proof-of-concept workflow that fuses a low spatial resolution (i.e., 125 μm) ion/ion reaction product ion image with higher spatial resolution (i.e., 25 μm) ion images from a full scan experiment performed using the same tissue section, which results in a predicted ion/ion reaction product ion image with a 5-fold improvement in spatial resolution. Linear regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN) predictive models were tested for this workflow. Linear regression and 2D CNN models proved optimal for predicted ion/ion images of PS 40:6 and SHexCer d38:1, respectively.
Enhancing Spatial Resolution in Tandem Mass Spectrometry Ion/Ion Reaction Imaging Experiments through Image Fusion.
阅读:10
作者:Liang Zhongling, Guo Yingchan, Diao Xizheng, Prentice Boone M
| 期刊: | Journal of the American Society for Mass Spectrometry | 影响因子: | 2.700 |
| 时间: | 2024 | 起止号: | 2024 Aug 7; 35(8):1797-1805 |
| doi: | 10.1021/jasms.4c00144 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
