Feature selection followed by a novel residuals-based normalization that includes variance stabilization simplifies and improves single-cell gene expression analysis.

阅读:3
作者:Singh Amartya, Khiabanian Hossein
Normalization is a crucial step in the analysis of single-cell RNA-sequencing (scRNA-seq) counts data. Its principal objectives are reduction of systematic biases primarily introduced through technical sources and transformation of counts to make them more amenable for the application of established statistical frameworks. In the standard workflows, normalization is followed by feature selection to identify highly variable genes (HVGs) that capture most of the biologically meaningful variation across the cells. Here, we make the case for a revised workflow by proposing a simple feature selection method and showing that we can perform feature selection before normalization by relying on observed counts. We highlight that the feature selection step can be used to not only select HVGs but to also identify stable genes. We further propose a novel variance stabilization transformation inclusive residuals-based normalization method that in fact relies on the stable genes to inform the reduction of systematic biases. We demonstrate significant improvements in downstream clustering analyses through the application of our proposed methods on biological truth-known as well as simulated counts datasets. We have implemented this novel workflow for analyzing high-throughput scRNA-seq data in an R package called Piccolo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。