Physics-based reservoir simulation for fluid flow in porous media is a numerical simulation method to predict the temporal-spatial patterns of state variables (e.g. pressure p) in porous media, and usually requires prohibitively high computational expense due to its non-linearity and the large number of degrees of freedom (DoF). This work describes a deep learning (DL) workflow to predict the pressure evolution as fluid flows in large-scale 3-dimensional(3D) heterogeneous porous media. In particular, we develop an efficient feature coarsening technique to extract the most representative information and perform the training and prediction of DL at the coarse scale, and further recover the resolution at the fine scale by spatial interpolation. We validate the DL approach to predict pressure field against physics-based simulation data for a field-scale 3D geologic [Formula: see text] sequestration reservoir model. We evaluate the impact of feature coarsening on DL performance, and observe that the feature coarsening not only decreases the training time by [Formula: see text] and reduces the memory consumption by [Formula: see text], but also maintains temporal error [Formula: see text] on average. Besides, the DL workflow provides predictive efficiency with 1406 times speedup compared to physics-based numerical simulation. The key findings from this research significantly improve the training and prediction efficiency of deep learning model to deal with large-scale heterogeneous reservoir models, and thus it can also be further applied to accelerate workflows of history matching and reservoir optimization for close-loop reservoir management.
Improving deep learning performance for predicting large-scale geological [Formula: see text] sequestration modeling through feature coarsening.
阅读:4
作者:Yan Bicheng, Harp Dylan Robert, Chen Bailian, Pawar Rajesh J
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Nov 30; 12(1):20667 |
| doi: | 10.1038/s41598-022-24774-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
