Atomistic-Based Fatigue Property Normalization Through Maximum A Posteriori Optimization in Additive Manufacturing.

阅读:4
作者:Awd Mustafa, Saeed Lobna, Walther Frank
This work presents a multiscale, microstructure-aware framework for predicting fatigue strength distributions in additively manufactured (AM) alloys-specifically, laser powder bed fusion (L-PBF) AlSi10Mg and Ti-6Al-4V-by integrating density functional theory (DFT), instrumented indentation, and Bayesian inference. The methodology leverages principles common to all 3D printing (additive manufacturing) processes: layer-wise material deposition, process-induced defect formation (such as porosity and residual stress), and microstructural tailoring through parameter control, which collectively differentiate AM from conventional manufacturing. By linking DFT-derived cohesive energies with indentation-based modulus measurements and a MAP-based statistical model, we quantify the effect of additive-manufactured microstructural heterogeneity on fatigue performance. Quantitative validation demonstrates that the predicted fatigue strength distributions agree with experimental high-cycle and very-high-cycle fatigue (HCF/VHCF) data, with posterior modes and 95 % credible intervals of σ^fAlSi10Mg=86-7+8MPa and σ^fTi-6Al-4V=115-9+10MPa, respectively. The resulting Woehler (S-N) curves and Paris crack-growth parameters envelop more than 92 % of the measured coupon data, confirming both accuracy and robustness. Furthermore, global sensitivity analysis reveals that volumetric porosity and residual stress account for over 70 % of the fatigue strength variance, highlighting the central role of process-structure relationships unique to AM. The presented framework thus provides a predictive, physically interpretable, and data-efficient pathway for microstructure-informed fatigue design in additively manufactured metals, and is readily extensible to other AM alloys and process variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。