Ablation of AgRP neurons impairs adaption to restricted feeding

AgRP神经元的消融会削弱对限制喂养的适应性

阅读:7
作者:Keith Tan, Zachary A Knight, Jeffrey M Friedman

Abstract

While the SCN controls the circadian clock, further evidence suggests the existence of a food-entrainable oscillator (FEO) that links behavior to changes in food availability such as during restricted feeding (RF). We found that the activity of AgRP/NPY neurons changed rhythmically during RF suggesting that these neurons are a component of the FEO. We next ablated AgRP/NPY neurons in neonates with diphtheria toxin resulting in the loss of ∼50% of AgRP/NPY neurons. Body weight and food intake were unchanged in adult animals after neonatal ablation, as were the responses to leptin treatment, leptin withdrawal, food deprivation and ghrelin treatment. However, ablated animals showed 30% mortality within 4 days of RF. Moreover, the recovery of body weight and food intake in surviving animals lagged behind controls with an absence of food anticipatory activity even after three days. These findings identify AgRP/NPY neurons as a key cellular component of the food-entrained oscillator.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。